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Abstract—Finite element modelling (FEM) has been the
primary approach for non-rigid medical image registration and
simulating image deformation in virtual models. A notable limi-
tation of FEM is the high computational cost and the challenges
associated with model identification in heterogeneous tissue. In
this paper, we propose using thin plate spline (TPS) as an alterna-
tive for simulating image deformation during ultrasound-guided
needle insertion. Unlike FEM, in TPS non-rigid deformations are
simulated by moving a point in the mesh to a target location, and
recalculating the location of all other points such that bending
energy is minimized, potentially making experimental model
identification easier.

We propose a novel formulation to convert needle-tissue in-
teraction forces, including tissue cutting, friction, and relaxation,
into localized nodal displacements that serve as inputs to the TPS
model. As the needle moves, it alters the input to the TPS based
on its speed, direction, and depth, resulting in a real-time update
of the mesh. These updates enable the TPS to adapt continuously,
ensuring that the mesh mimics the tissue response. The proposed
model is compared against an equivalent FEM model in a
series of simulations and experiments in ex-vivo porcine tissue.
The results show that both models have similar accuracy with
TPS being consistently faster than FEM, with improvements in
computational efficiency of above 50%. These results confirm
the potential of the proposed method to be integrated into
ultrasound-guided surgical simulation to enhance precision with
larger meshes while reducing computational burden.

I. INTRODUCTION

In ultrasound-guided percutaneous surgery (usPS), thin
instruments are guided to a target in the tissue through small
skin punctures. The procedure is commonly performed under
ultrasound image guidance with applications spanning biopsy,
brachytherapy, nephrolithotomy, and tumour ablation. While
usPS has many advantages over other types of interventions,
practitioners often face a steep learning curve and require
specialized training to achieve surgical proficiency. This is
often attributed to the high level of coordination and dexterity
needed to image the tool while steering it towards a target.

The interventionist visualizes the tool with longitudinal or
transverse imaging. In longitudinal imaging, they insert the
tool so that its shaft travels parallel to the imaging plane,
appearing as a line in the 2D image. In transverse imaging, the
tool shaft crosses the imaging plane orthogonally, appearing
as a bright spot in the image. To maintain visualization and
guide the tool tip toward the target, the interventionist must
continuously sweep the probe back and forth. Coordinating
the hand holding the probe and the hand holding the tool is

challenging. In addition, the tool deforms the tissue and pushes
the target away from its original location, while also shifting
anatomical structures in the ultrasound images [1]. Other
challenges, including limitations in image quality and poorly
resolved targets, further complicate the procedure, adding to
the learning curve and making the procedure outcomes highly
operator dependent [2], [3]. In nephrolithotomy, for example,
the learning curve only plateaus after 60 interventions and
surgical excellence requires 115 trials [4].

To overcome this learning curve, usPS can strongly benefit
from surgical simulation. Indeed, physical, virtual, or cyber-
physical simulators are nowadays a fundamental component
of contemporary surgical training programs, allowing inter-
ventionists to practice and hone their skills in a risk-free
environment [5]. Such simulators require dynamic, real-time
modelling of the tool (like a needle) and tissue interaction
to update the simulated ultrasound images in real-time [6].
In usPS, tissue and image deformation models can teach
the interventionist how to minimize tissue damage, interpret
ultrasound images, and ensure accurate tissue targeting [7].

Traditionally, the biomechanical response of soft tissue
to external forces, such as those caused by needle insertion,
has primarily been simulated using finite element modelling
(FEM). It relies on solving complex partial differential equa-
tions describing tissue deformation. FEM has been extensively
used to simulate needle insertion, including for needle guid-
ance and tissue trauma assessment in the liver [8], [9], needle
steering in brachytherapy [10], [11], [6], and general 2D and
3D image deformation [12], [13]. While accurate, FEM models
are computationally expensive and often require specialized
hardware, limiting their applicability in portable and small
simulators [14], [15]. Furthermore, FEM models often strug-
gle with non-linear tissue response, particularly with large
deformations common in needle insertion procedures [11].
Despite advancements in computer power and the development
of optimized solvers, the use of real-time FEM simulation in
a clinical setting and surgical simulators remains limited [16],
[17].

An alternative approach to simulate tissue displacement
and the corresponding deformation of ultrasound images is
thin plate spline (TPS). TPS was originally developed for
interpolating smooth surfaces through a set of control points.
Unlike FEM, TPS does not rely on complex partial differential
equations but on radial basis functions to interpolate defor-
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mations between a set of source and target points, reducing
computational complexity making it well-suited for portable
applications in surgical simulators [18]. TPS models the image
as a mesh of points in space connected by elastic elements.
It simulates non-rigid deformations by moving a point in
the mesh to a target location, and recalculating the location
of all other points such that bending energy is minimized.
TPS is used predominantly for image registration. In [19],
for example, TPS is used to register ultrasound elastography
images of breast tissue with corresponding histopathology
images. Similarly, TPS has been applied in 3D ultrasound
image registration to account for deformation between adja-
cent frames. For a comprehensive review on TPS for image
registration, please refer to [20], [19], [21]

Since TPS inherently supports non-rigid deformations, it
can be effective for simulating the behaviour of soft tissue
subjected to cutting and friction during needle insertion and
steering. Yet, to the best of our knowledge, TPS has not
been used for this purpose. In this paper we propose TPS
as alternative to FEM to simulate real-time ultrasound images
deformation during usPS. We present a new formulation that
models tissue cutting at the needle tip and friction along the
needle shaft as localized mesh displacements, which serve
as the input to the model. TPS is then used to displace all
remaining mesh points accordingly, thereby simulating the
resulting tissue deformation and dynamically updating the
control points. We show that the proposed method outperforms
an equivalent FEM model in terms of computational time by
51.8% while achieving equivalent simulation accuracy.

The paper is structured as follows: Section II introduces the
mathematical formulation of TPS. This is followed in Section
III by a detailed description of the novel framework proposed
to model the interaction between the needle and the tissue
as localized mesh point displacements, including friction,
tissue cutting, and tissue relaxation. Section IV gives a brief
overview of an equivalent FEM model used for comparison
purposes. The proposed method is validated experimentally
and compared against the FEM model in Section V in terms of
computational efficiency and image deformation accuracy. The
results are followed by a discussion and the paper concludes
with outlines of future work.

II. THIN PLATE SPLINE BASED ULTRASOUND IMAGE
DEFORMATION

In the proposed TPS formulation, the tissue is represented
as a rectangular mesh of n discrete points ζs(x, y), where
x and y give the coordinates of the point within the mesh.
These mesh points are evenly spaced by a unit distance k. For
example, a point one unit in the positive x-direction from the
origin has coordinates ζs(k, 0).

Consider a second mesh where a point is displaced from
its original position ζs(x, y) ∈ R2×1 to a new coordinate
ζt(x, y). The goal of the TPS to find a transformation
g(x, y) ∈ R2 to deform the original mesh such that a point
ζs(x, y), hereafter referred to as a source point, moves to
coordinate ζt(x, y), hereafter referred to as a target point. This

Fig. 1. a) Mesh of points describing source points mapped to a target points.
b) Resulting deformation of the mesh. c) Friction threshold in mesh. d)
Displacement field due to needle/tissue interaction.

can be illustrated in Fig. 1 (a) and (b) as the source point at
ζs(k, 0) is mapped to the target point ζt(k, k). The transfor-
mation does so by minimizing an energy function, resulting
in smooth deformations of the mesh. The function must be a
continuous second-order partial differential equation, such as:∫ ∫

R2

[(
∂2g

∂x2

)2

+ 2

(
∂2g

∂x∂y

)2

+

(
∂2g

∂y2

)2
]
dxdy (1)

The input to the transformation g(x, y) is the coordinate
of the ith source point ζsi(x, y) in the original mesh, and
the output is the corresponding location of that point in
the deformed mesh ζ′

si(x, y). The transformation can further
be written by a sum of functions that only depend on one
component of g(x, y), combining an affine transformation
that accounts for global shifts and rotations, and a non-linear
deformation governed by a radial basis function, that is

g(x, y) = a0 + a1x+ a2y +

n×m∑
i=1

wiU(rij). (2)

In the above, the coefficients a0 to a2 ∈ R2 are affine
parameters, while wi is a weight assigned to each of the n
source points, determining the influence each source point on
the overall deformation of the mesh, and U(rij) is a the radial
basis function:

U(rij) = r2ij ln(r
2
ij) (3)

where rij = ∥ζsi −ζsj∥ is the Euclidean distance between the
current input to U(rij), i.e., ζsi(x, y), to all other points in
the source mesh ζsj (x, y), with j = 1, 2 . . . n.



A symmetric kernel matrix K ∈ Rn×n can now be
constructed to gather the distances between all source points,
quantifying the relative amount of distortion required to match
landmark pairs in the source mesh as

K =


0 U(r12) · · · U(r1n)

U(r21) 0 · · · U(r2n)
...

...
. . .

...
U(rn1) U(rn2) · · · 0

 (4)

Additionally, a matrix of source points R ∈ Rn×3 can be
constructed by concatenating all source points with a column
of ones to account for global shifts and rotations in the
transformation. This allows the model to handle both local
deformations and overall linear transformations in the mesh.
The matrix of source points is:

R =

[
1 1 . . . 1
ζs1 ζs2 . . . ζsn

]T
(5)

To calculate the affine parameters a0 to a2, and the weight-
ing coefficient wi of source point i, a matrix L ∈ Rn+3×n+3

is constructed from the kernel matrix K and R as

L =

[
K R
RT O1

]
(6)

where O1 ∈ R3×3 is a matrix of zeros to ensure L is square.
The weights wi and affine parameters a are:[

w1 . . . wn a0 a1 a2
]T

= L−1V (7)

where V ∈ Rn×2 is a matrix containing all m target points:

V =
[
ζt1 ζt2 . . . ζtm O2

]T
(8)

and O2 ∈ Rn−m×2 is a matrix of zeros to give V the same
number of rows as L−1. The new positions ζ′

si(x, y) are
computed by using the results of (7) in the initial formulation
in (2), resulting in:

ζ ′si = a0+a1x+a2y+

n∑
i=1

wi∥ζsi−ζsj∥2 log ∥ζsi−ζsj∥2 (9)

Algorithm 1 describes the implementation of the TPS.
By solving the inverse problem above, the energy required
to deform the source mesh to match the target points is
minimized. With the TPS algorithm defined, the goal is to
determine a set of target points required to capture tissue
deformation during needle-tissue interaction.

Algorithm 1 TPS Calculation
Initialize source points ζs(x, y) and target points ζt(x, y)
Compute kernel matrix K using (4)
Construct system matrix L using (6)
Compute inverse L−1

Compute TPS affine parameters and weights with (7)
Apply TPS to deform mesh
Update source points ζ′

s(x, y) using (9)

III. NEEDLE AND MESH INTERACTION

The goal of the model is to simulate the deformation of
the mesh (i.e., the tissue) when a rigid needle is inserted into
it. To do so, we create a set of target points connected to the
needle shaft. The needle tip enters the mesh at a fixed point ns

and travels to a position nt, as shown in Fig. 1. The needle’s
shaft can be modelled as a straight line from the entry point
ns to current position of the needle tip nt, that is:

n(t) = ns + t(nt − ns) (10)

where 0 ≤ t ≤ 1 is a scalar parameter representing the
fractional distance of n along the needle’s path:

t =
(n(t)− ns) · (nt − ns)

∥nt − ns∥2
(11)

The interaction between the needle shaft and the tissue
can be divided into three main effects: tissue displacement
due to tissue cutting at the needle tip, tissue displacement due
to friction along the needle shaft, and tissue relaxation.

A. Tissue Deformation at the Needle Tip

At the needle tip, where t = 1, the needle pushes the tissue
and displaces mesh points further along its insertion direction.
We define a target point ahead of the needle tip as:

ζtip = nt + σ ·
(

nt − ns

∥nt − ns∥

)
(12)

where σ is the distance of the target point ahead of the needle
tip measured along the direction of the needle shaft, as shown
in Fig 1(c). This point ζtip is the target point for the mesh
point that is the closest to the needle tip. In other words,
the closest mesh point to the needle tip is deformed to ζtip

and the neighbouring points are deformed accordingly, thereby
capturing how the needle tip pushes the tissue ahead of it.

B. Tissue Displacement due to Friction Along Needle Shaft

Points in the mesh near the needle shaft are affected by
friction. Let di be the shortest distance between mesh point
ζsi(x, y) to the needle shaft, that is:

di = min ∥ζsi(x, y)− n(t)∥, ∀ 0 ≤ t ≤ 1 (13)

We assume that friction affects all the mesh points having a
distance di ≤ δ, where δ is a tunable threshold parameter. Fig.
1(d) shows the distance threshold δ between points that fit the
criteria to be affected by friction. We can now define a target
point for every mesh point ζsi(x, y) affected by friction as:

ζti = ζsi + fi

(
nt − ns

∥nt − ns∥

)
(14)

The above formulation implies that if ζsi is within the
threshold, the mesh point moves to target point ζti which
corresponds to the position of the mesh point shifted by fi
units, parallel to the needle shaft. The term in parentheses is
the unit vector along the direction of the needle shaft. The
mesh displacement fi due to friction is:

fi =

(
α1 + α2

1

1 + edi

)
v (15)



where v is the needle insertion speed along nt − ns, α1 is a
tunable constant relating the displacement of the source point
to the speed, and constant α2 can be used in the Sigmoid
function to so that points farther from the needle are less
affected by friction.

C. Tissue Relaxation

Once a mesh point ζsi is moved to ζti due to friction
and the needle stops, the deformed points naturally attempt to
return to their original positions over time. This behaviour can
be modelled by introducing a relaxation factor α3:

ζti = ζri +
(
ζsi − ζri

)
e−α3t (16)

where ζri is the position of mesh points before they were dis-
placed by friction, i.e., before (14) is applied. The exponential
component above decreases over time, gradually moving the
mesh points back toward their original positions. A large α3

leads to fast relaxation. The exponential decay ensures that
the mesh points gradually approach their original positions but
never instantaneously, simulating the natural elasticity. Adding
tissue relaxation into TPS results in the following modified
equation for the deformed mesh points:

g(x, y) = a0+a1x+a2y+

n×m∑
i=1

wiU(rij)+
(
ζs − ζ′

s

)
e−α3t.

(17)
The needle/mesh interactions determine the positions of

landmark points ζs(x, y) and corresponding target points
ζt(x, y), see Algorithm 2. As the needle moves, it alters the
input to the TPS based on its speed, direction, and depth,
resulting in a real-time update of the mesh. These updates
enable the TPS to adapt continuously, ensuring that the mesh
deforms accurately, mimicking the tissue response.

Algorithm 2 Needle-Tissue Interaction
Initialize mesh ζs and landmarks.
while needle is moving do

Update needle tip nt and compute speed v
for each mesh point ζsi do

Compute distance: di using (13)
if di ≤ δ then

Compute friction displacement using (14)
end if

end for
Set needle tip target using (12)
Update mesh using TPS transformation.
Apply relaxation using (16)

end while

IV. FEM-BASED ULTRASOUND IMAGE DEFORMATION

In order to compare the proposed TPS algorithm with a
standard FEM model, a brief description of how it can be
used to model tissue deformation by discretizing it into a mesh
of elements and solving the governing equations of elasticity
in a weak form is provided below. Similar to the mesh we
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(c) (d)
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needle

needle

Fig. 2. Simulation results. In (a) and (b) the mesh displacement resulting
from needle insertion using TPS and FEM, (c) shows the Cartesian distance ϵ
between nodes (a) and (b). When the mesh is applied to the ultrasound image
in (d), the resulting images are (e) for TPS and (f) for FEM.

previously described in the TPS algorithm, in FEM the tissue
domain Ω ⊂ R2 is modelled by a mesh displacement field

u(x, y) =

(
ux(x, y)
uy(x, y)

)
. (18)

Under equilibrium, the governing equations are given by
∇ · µ = 0 in Ω where the stress tensor µ is related to the
strain tensor ε via Hooke’s law, i.e., µ = C ε. For plane-stress
conditions, the constitutive matrix C is

C =
E

1− ν2

1 ν 0

ν 1 0

0 0 1−ν
2

 (19)

with E is the tissue’s Young’s modulus and ν the Poisson’s
ratio. The strain tensor is expressed as

ε =

[
∂ux

∂x

∂uy

∂y

∂ux

∂y
+

∂uy

∂x

]T
. (20)

Multiplying by a test function v and integrating over the
domain yields the weak form:∫

Ω

ε(v)T C ε(u) dΩ =

∫
ΓN

vT t dΓ, (21)

where ΓN is the portion of the boundary with prescribed trac-
tion t. Discretizing Ω into finite elements and approximating
the displacement field with shape functions Ni(x, y),

u(x, y) ≈
N∑
i=1

ui Ni(x, y) (22)



leads to the system of linear equations:

Ku = F, (23)

where K is the global stiffness matrix and F is the load vector,
which includes all forces applied to the tissue during needle
insertion, including the tissue cutting force at the needle tip,
and viscous friction between the needle shaft and the tissue
modelled as a distributed load in the mesh [6].

V. EXPERIMENTAL VALIDATION AND RESULTS

To validate the proposed algorithms and assess its perfor-
mance against the equivalent FEM model, a set of simulations
and experiments on ex-vivo tissue are performed. First, a mesh
of 1200 points is created for both TPS and FEM algorithms.
In the FEM model, four different tissues types are considered,
ranging from soft to stiffer, by setting the Young’s modulus E
to 104, 84, 54, and 103 Pa, with a Poisson’s ratio of ν = 0.45,
which is within the range of biological tissue [22]. A needle
is then inserted at a oblique angle from the top of the mesh
with a needle tip cutting force of F = 0.4 N, and friction
constant of 10−5 Ns/m, as per [11]. The mesh displacement
is evaluated using the FEM simulation for 50 discreet needle
insertion depths. The displacement of every mode in the mesh
is then evaluated at depth.

Following the FEM simulation, an equivalent TPS model
is run. Since the TPS model parameters cannot be calculated
from those of the FEM model, the TPS must be tuned to
match the FEM. If ϵ = ||g(x, y) − u(x, y)|| is the Cartesian
distance between equivalent nodes in the TPS and FEM mesh,
the mean absolute error (MAE) and root mean square error
(RMSE) between the N nodes with non zero displacement
(ϵ ̸= 0) is

MAE =
1

N

∑
N

ϵ, RMSE =

√
1

N

∑
N

ϵ2. (24)

To model the parameters that minimize the MAE with
respect to the FEM model, the TPS is run 2000 times, each
using a different combination of K, α1, and α2. A sample
result showing the FEM nodal displacement, and that of the
TPS with the lowest MAE is shown in Fig. 2(a) and (b).
Fig. 2(c) shows the error ϵ between them, indicating that
by accurately tuning the TPS model, the error is negligible.
Next, each point in the mesh is matched to a pixels in the
sample ultrasound image shown in Fig. 2(d) to simulate image
deformation caused by needle insertion. The result for TPS and
FEM models can be seen in Fig. 2(e) and (f).

MAE and RMSE between the TPS and FEM simulations
for nodes with (ϵ ̸= 0) are shown in Fig. 3(a). As expected, the
error increases as the tissue Young’s modulus decreases, yet it
remains under 10−3 on a 1200 point mesh. Finally, the average
simulation time for each of the 50 needle insertion steps in all
simulations is computed for both the TPS and FEM models on
an intel i5 computer with 16 Gb of RAM. Both simulations are
executed in Matlab on a mesh size ranging from 500 to 4500
nodes. The results shown in Fig. 3(b) indicate that the TPS

Fig. 3. Mesh displacement error between TPS and FEM for different tissue
types (a) and average simulation time as a function of the number of mesh
nodes in the simulation (b).

simulation is on average 51.8% faster than the FEM model,
while achieving similar mesh displacement outputs.

The model performance is further evaluated via a piece
of porcine ex-vivo tissue following the experiment depicted in
Fig. 4. A 18G needle is inserted into the tissue, just under
the imaging plane of an ATL C5-2 ultrasound probe placed
on the other side of the sample. A region of interest (ROI) of
approximately 2x3 mm with 200 pixels is defined and placed
at a constant distance ahead of the needle tip. As the needle
is manually and slowly pushed into the tissue, the ROI moves
towards the probe. Ultrasound images of the ROI taken before
the needle is inserted and during needle insertion are then
compared using the speckle tracking algorithm described in
[23]. Both a FEM and TPS mesh are created with the same
number of nodes and resolution as there are pixels in the
ultrasound image. The model parameters of both simulations
are then optimized separately to minimize the RMSE between
the speckle displacement of each pixel in the ROI and each
corresponding mesh node displacement for a number of dis-
creet needle insertion steps.

The RMSE between the displacement of all 200 pixels in
the ROI in 8 different image frames, and the displacement
of the equivalent nodes in the FEM and TPS models is
shown in Fig. 5(a). The total axial displacement of the pixels
in the 40x40 mm US images at depths 2 and 9 mm are
shown in (b) and (c). The RMSE between the two models
is statistically the same and the error remains under 0.02 mm,
confirming the accuracy of the proposed model in capturing
tissue displacement.

VI. CONCLUSION

FEM has been the primary model used in medical imaging
for non-rigid image registration and simulating image defor-
mation in virtual models. In this paper, we propose TPS as an
alternative modelling approach to FEM, specifically for ultra-
sound image deformation induced by a needle inserted in the
tissue. We devised a new formulation to convert needle/tissue



ultrasound probe

18G needle

porcine
sample

ROI

ROI

needle

Fig. 4. Experimental setup to evaluate the model performance on the ex-vivo
porcine tissue shown in the image. Speckle displacement is tracked within the
region of interest (ROI), kept at a constant distance ahead of the needle tip.

Fig. 5. RMSE between speckle displacement in the ROI and TPS and FEM
nodal displacement (a). In (b-c), the measured speckle displacement at depth
2 and 9 mm with the needle inserted from the centre bottom of the image.

interaction forces into suitable mesh displacement inputs to
the TPS model. To the best of our knowledge, this modelling
approach has not been proposed before. This contribution can
make image displacement model identification easier than the
traditional FEM models, as the input to the mesh can be
obtained from speckle displacement measured experimentally,
rather than tissue characterization.

Simulation and experimental results show that the TPS and
FEM models can achieve similar accuracy when optimized to
match one another. Notably, TPS is consistently faster than
FEM, showing improvements in computational efficiency of
above 50% on a regular desktop computer. The model was
validated experimentally on ex-vivo tissue, further confirming
the accuracy of the proposed framework. Currently, the mesh is
assumed to have an homogeneous and linear stiffness constant.
In future work, the model will be extended to account for
nonlinearity and heterogeneity in the tissue. In addition, a more
thorough experimental evaluation on different tissue samples
should be conducted to further establish model accuracy.
Furthermore, future work will develop a speckle model of the
needle to be included in the images.
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